skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goldgeier, Brian R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background As fire seasons in the Western US intensify and lengthen, fire managers have been grappling with increases in simultaneous, significant incidents that compete for response resources and strain capacity of the current system. Aims To address this challenge, we explore a key research question: what precursors are associated with ignitions that evolve into incidents requiring high levels of response personnel? Methods We develop statistical models linking human, fire weather and fuels related factors with cumulative and peak personnel deployed. Key results Our analysis generates statistically significant models for personnel deployment based on precursors observable at the time and place of ignition. Conclusions We find that significant precursors for fire suppression resource deployment are location, fire weather, canopy cover, Wildland–Urban Interface category, and history of past fire. These results align partially with, but are distinct from, results of earlier research modelling expenditures related to suppression which include precursors such as total burned area which become observable only after an incident. Implications Understanding factors associated with both the natural system and the human system of decision-making that accompany high deployment fires supports holistic risk management given increasing simultaneity of ignitions and competition for resources for both fuel treatment and wildfire response. 
    more » « less